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Abstract

Recent years have seen increasing concern that artificial intelligence may soon pose an
existential risk to humanity. One leading ground for concern is that artificial agents
may be power-seeking, aiming to acquire power and in the process disempowering
humanity. I show how the argument from power-seeking rests on a strong version of a
claim known as the instrumental convergence thesis. I explore leading defenses of the
instrumental convergence thesis and argue that none establishes the thesis in a strong
enough form to ground the argument from power-seeking. I discuss implications
for longtermism, the governance of artificial intelligence, and the methodology of
studying risks posed by artificial agents.

1 Introduction

Recent years have seen increasing concern that artificial intelligence may soon pose an

existential risk to humanity. Significant concerns have been expressed by artificial in-

telligence pioneers such as Yoshua Bengio (2023), Geoffrey Hinton (2023), and Stuart

Russell (2019). Leading artificial intelligence researchers have signed statements (Center

for AI Safety 2023; Future of Life Institute 2023) calling for increased attention to exis-

tential risks, and many express sympathy for risk claims in expert surveys (Grace et al.

2016, 2022; Müller and Bostrom 2016; Zhang et al. 2022). A raft of organizations have

devoted significant resources to studying and mitigating existential risks from artificial

intelligence.1 Concerns about existential risk are defended at book length by leading

scholars (Bostrom 2014; Russell 2019), in policy reports (Carlsmith 2021; Cotra 2020), and

in academic papers (Bales et al. 2024; Bostrom 2012; Turner et al. 2021).

One prominent ground for concern is that artificial agents may be power-seeking,

aiming to acquire power and in the process disempowering humanity in a permanent

1These include nonprofits such as the Center for AI Safety and the Center for the Governance of AI;
government institutes such as the UK AI Safety Institute and the US AI Safety Institute; frontier AI lab-
oratories such as OpenAI and Anthropic; grantmakers such as Open Philanthropy and the Future of Life
Institute; dedicated laboratories such as Conjecture and Redwood Research; and academic centers such as
the Stanford Center for AI Safety and the CMU Safe AI Lab.
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and catastrophic fashion (Bostrom 2012; Carlsmith 2021; Dung 2024; Ngo and Bales forth-

coming). Typically, concerns about power-seeking are rooted in the idea that power is an

instrumentally convergent goal, roughly in the sense that a wide variety of agents will

find power conducive to achieving their goals and hence will pursue power in order to

achieve their goals (Bostrom 2012; Omohundro 2008).

My aim in this paper is to clarify the instrumental convergence thesis used to drive

concerns about existential risk from power-seeking artificial intelligence and to argue that

leading defenses of instrumental convergence do not establish the needed claim. Section 2

presents the argument from power-seeking used to argue that power-seeking artificial intelli-

gence poses a significant existential risk, then clarifies the role of instrumental convergence

in the argument from power-seeking. Section 3 explores a leading informal defense of

instrumental convergence, the argument from misalignment, and argues that it does not

establish an instrumental convergence claim strong enough to drive the argument from

power-seeking. Section 4 explores a range of power-seeking theorems which aim to for-

mally establish instrumental convergence results, focusing on the Orbital Markov Model

of Alexander Turner and colleagues (2021). Section 5 argues that power-seeking theo-

rems likewise fail to establish the needed version of instrumental convergence. Section

6 concludes by discussing implications for the methodology of studying risks posed by

artificial agents (Sections 6.1-6.2), the governance of artificial intelligence (Section 6.3) and

longtermism (Section 6.4).

2 Power-seeking and instrumental convergence

The argument from power-seeking claims that artificial agents with a wide variety of

goals will be motivated to seek power, thereby disempowering humanity and causing

an existential catastrophe (Bostrom 2014; Carlsmith 2021, forthcoming; Ngo and Bales

forthcoming; Turner et al. 2021). Many formulations of the argument are possible, but here
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is a leading formulation due to Joe Carlsmith (Carlsmith 2021, forthcoming).2 Carlsmith

holds that by 2070:3

(Possibility) It will become possible and financially feasible to build relevantly

powerful and agentic AI systems.

(Incentives) There will be strong incentives to do so.

(Alignment Difficulty) It will be much harder to build aligned (and relatively

powerful and agentic) AI systems than to build misaligned (and relevantly

powerful and agentic) AI systems that are still superficially attractive to deploy.

(Power-Seeking) Some such misaligned systems will seek power over humans

in high-impact ways.

(Disempowerment) This problem will scale to the full disempowerment of

humanity.

(Catastrophe) Such disempowerment will constitute an existential catastrophe.

There are many ways to push back against the argument from power-seeking. We might

raise technological challenges to Possibility, questioning the technological feasibility of

constructing systems powerful enough to disempower humanity by 2070 (Landgrebe and

Smith 2022; Thorstad forthcoming). We might unpack the different notions of disempow-

erment involved in Disempowerment and question whether the most problematic will

come to pass (Bales forthcoming). Or we might deny Catastrophe, holding that a future

without humanity would not be catastrophic, for example because the world is not made

better by improving the lives of individuals who would otherwise not exist (Narveson

1973; Frick 2017), because our descendants might suffer (Benatar 2006), or because our

2See Dung (2024) for a related presentation of the argument from power-seeking.
3This argument is taken directly from Carlsmith (forthcoming), with two modifications. First, I treat

the premises as unconditional claims, whereas Carlsmith conditionalizes each premise on the previous
premises. Second, I have added descriptive labels to each premise. A slightly expanded version of this
argument can be found in (Carlsmith 2021).

3



posthuman replacements might be wiser and more numerous than us (Armstrong and

Sandberg 2013; Greaves and MacAskill 2021).

This paper pursues a different route. Leading arguments for Alignment Difficulty

and Power-Seeking appeal to the idea that power is an instrumentally convergent goal

(Bostrom 2014; Carlsmith 2021). In rough outline, Power-Seeking is defended on the

grounds that power is valuable to agents with many different goals, and Alignment

Difficulty is defended on the grounds that it is difficult to identify useful goals for which

power would not be valuable. I want to challenge this appeal to instrumental convergence.

What exactly does instrumental convergence hold? A leading statement of instrumen-

tal convergence is due to Nick Bostrom:

(IC-B) Several instrumental values can be identified which are convergent in

the sense that their attainment would increase the chances of the agent’s goal

being realized for a wide range of final goals and a wide range of situations,

implying that these instrumental values are likely to be pursued by many

intelligent agents. (Bostrom 2012, p. 76)

IC-B contains an inference between two claims that we may have reason to treat separately

(Gallow forthcoming; Thorstad 2023):

(Goal Realization) There are several values which would increase the chances

of an agent’s final goal being realized, for a wide range of goals and a wide

range of situations.

(Goal Pursuit) There are several values which would be likely to be pursued

by a wide range of intelligent agents.

IC-B asserts both Goal Realization and that Goal Realization implies Goal Pursuit. Many

subsequent statements of instrumental convergence likewise treat instrumental conver-

gence as Goal Realization, assuming or arguing that Goal Realization implies Goal Pur-
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suit.4

Establishing Goal Pursuit may be more difficult than establishing Goal Realization

for several reasons. One challenge that will not be pursued here is that many existing

arguments from Goal Realization to Goal Pursuit assume that artificial agents are well-

modeled as having and optimizing goals, often in something like the sense of expected-

utility maximization. That may not be obvious (Bales 2023).

The challenge that I want to pursue is that Goal Pursuit differs from Goal Realization in

speaking of agents rather than goals, and of what agents will do rather than what would

increase the chance of their goals being realized. This makes Goal Pursuit much harder to

demonstrate, since agents have multiple goals and are not always willing to pursue one

goal at the expense of all others. For example, there is no doubt that money is conducive

to the achievement of many goals that I have. However, it does not follow that I would

rob a bank tomorrow if I could get away with it. That is not because I have no use for the

money, but rather because I also value the welfare of others, fairness and the rule of law.

While I may be willing to bend these scruples from time to time, I am not willing to toss

them dramatically aside, even for great instrumental gain. In the same way, what must

be shown is not just that artificial agents would find power greatly conducive to many of

their goals, but also that they will be so utterly unconcerned with the consequences that

they find the complete and existentially catastrophic disempowerment of humanity to be

an acceptable sacrifice in exchange for power.

This last claim reminds us that even Goal Pursuit is not enough to ground the argument

from power-seeking, since it says nothing about the degree of power that is likely to be

pursued. To ground Disempowerment and Catastrophe, the argument from power-

seeking needs to claim:

4For example, Adam Bales and colleagues take instrumental convergence to be “the claim that certain
resource-acquiring, self-improving and shutdown-resisting subgoals are useful for achieving a wide variety
of final goals” (Bales et al. 2024, p. 5). Leonard Dung states instrumental convergence as the claim that
“there are certain goals which are instrumentally useful for a wide range of final goals and a wide range
of situations” (Dung 2024, p. 10). And Richard Ngo and Adam Bales (forthcoming) adopt a formulation
they attribute to Bostrom on which instrumental convergence “states that some instrumental goals – like
survival, resource acquisition, and technological development – are instrumentally useful for achieving
almost any final goal.”
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(Catastrophic Goal Pursuit) There are several values which would be likely to

be pursued by a wide range of intelligent agents to a degree that, if successful,

would lead to the permanent and existentially catastrophic disempowerment

of humanity.

Catastrophic Goal Pursuit is a much stronger claim than Goal Pursuit. Most of us some-

times pursue money and other forms of power. Indeed, I very much hope to be paid

monthly for my work. Many fewer of us pursue great power at significant expense to

others, for example by robbing a bank. And precious few pursue global power, seeking

total and permanent control over humanity. That is not just because we think we would

not be successful but also, for most normal humans, because we count the prospect of

world domination as rather unappealing.

Catastrophic Goal Pursuit is a strong claim, and it should be given a correspondingly

strong argument. In the next three sections, I explore informal (Section 3) and formal

(Sections 4-5) arguments for Catastrophic Goal Pursuit and argue that they do not succeed.

In each case, I focus on a leading formulation of the argument that will be representative

of many, though perhaps not all arguments for Catastrophic Goal Pursuit. The conclusion

that follows will then be, at the very least, that these leading arguments do not establish

Catastrophic Goal Pursuit.

3 The argument from misalignment

One of the most common informal arguments for Catastrophic Goal Pursuit is what we

might call the argument from misalignment (Dung 2024; Carlsmith 2021; Ngo and Bales

forthcoming). This argument is embedded in Carlsmith’s formulation of the argument

from power-seeking, which argues first for Alignment Difficulty and then on this basis

for Power-Seeking. The argument goes roughly as follows:

(Misaligned Deployment) Humanity will soon develop and deploy a wide range of

misaligned artificial agents.
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(Misaligned Disempowerment) There are several values which misaligned artificial

agents would likely pursue to a degree that, if successful, would lead to the permanent

and existentially catastrophic disempowerment of humanity.

∴ (Catastrophic Goal Pursuit) There are several values which would be likely to be

pursued by a wide range of intelligent agents to a degree that, if successful, would

lead to the permanent and existentially catastrophic disempowerment of humanity.

We can see why skeptics of Catastrophic Goal Pursuit remain unconvinced by evaluating

both premises of the argument from misalignment.

To unpack the contents of Misaligned Deployment, we need to say what it means for

artificial agents to be misaligned. Some authors understand misalignment as a property of

agents’ goals – for example, Richard Ngo and Adam Bales (forthcoming) hold that “goals

[are] misaligned if they are undesirable from a human perspective.” Others understand

misalignment as a property of behavior – for example, Joe Carlsmith (forthcoming) defines

misaligned behavior as “unintended behavior that arises specifically in virtue of problems

with an AI system’s objectives.” Others are more pluralistic: for example, Leonard Dung

defines an aligned model as one that “pursues goals, has values or optimizes an objective

function which correspond to the goals, values or objective function its desires want it

to have” and defines a misaligned model to be one that is not aligned (Dung 2024, p.

8). What is common to these definitions is the idea that misalignment involves goals or

behaviors that are unintended or undesirable from a human perspective. For simplicity,

I discuss misalignment as a property of the desirability of goals, though much of the

discussion should carry over to other definitions.

On this definition, it would not be surprising for artificial agents to be misaligned

to some degree. A system which placed only slightly too much value on situations in

which humans drink green tea would be misaligned in virtue of holding an undesirable

goal. If Misaligned Deployment is meant to support Misaligned Disempowerment, we

will need to understand misalignment in a much stronger sense. For example, we might
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understand misalignment as catastrophic underweighting, in which agents assign signifi-

cantly less disvalue to some types of human disempowerment than it would be desirable

for them to assign. Alternatively, we might understand misalignment as rapid swamping,

in which agents value some goals to the extent that they could value feasible levels of

goal achievement strongly enough to outweigh the disvalue of human disempowerment.

What could be said in favor of thinking that such dramatically misaligned agents will be

developed and deployed?

One concern is reward mis-specification (Pen et al. 2022; Ribero et al. 2020; Russell 2019).

Since we cannot precisely formalize our values, we often reward agents during training

for proxy goals that can come apart from what we care about. Stewart Russell offers the

following illustration:

Suppose we ask some future superintelligent system to pursue the noble goal

of finding a cure for cancer – ideally as quickly as possible, because someone

dies from cancer every 3.5 seconds. Within hours, the AI system has read the

entire biomedical literature and hypothesized millions of potentially effective

but previously untested chemical compounds. Within weeks, it has induced

multiple tumors of different kinds in every living human being so as to carry

out medical trials of these compounds, this being the fastest way to find a cure.

(Russell 2019, p. 138)

More immediate examples of reward mis-specification are ready to hand. For example,

an agent rewarded for minimizing the number of visibly un-watered tomatoes learned to

place a bucket over its head and stop watering tomatoes (Leike et al. 2017). Similarly, a

system trained to stack a red lego on top of a blue lego was rewarded for the height of the

top of the red lego when released (Krakovna et al. 2020). The system learned to rotate the

red lego to stand vertically, then let it fall.

Another concern is goal misgeneralization: goals that lead agents to perform well during

training may not lead to good performance in novel situations (Ngo and Bales forthcom-

ing; Langosco et al. 2022; Shah et al. 2022). Examples of goal misgeneralization abound.
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For example, an agent trained to open chests with keys developed the goal of collecting

keys alongside the goal of opening chests (Langosco et al. 2022). In key-rich environments,

the agent then took to collecting keys and ignoring chests. Likewise, an agent trained to

harvest trees learned from tree-rich environments to chop trees as quickly as possible,

leading to deforestation in novel environments (Shah et al. 2022).

A final concern is the difficulty of detecting misaligned goals. Detecting misaligned

goals may be difficult because advanced artificial systems are often complex and difficult to

interpret (Ngo and Bales forthcoming). Indeed, despite recent advances (Templeton et al.

2024) even current systems remain difficult to interpret (Sharkey et al. 2025). Detecting

misaligned goals may be still more difficult to the extent that agents with misaligned goals

may have incentives to deceive us about their true goals (Ngo and Bales forthcoming; Park

et al. 2024; Tarsney 2025). A system that wished to bring about human disempowerment

would hardly serve its goals by telling us of its plans.

There is no doubt that some degree of goal misgeneralization and reward mis-

specification may arise and escape detection. However, more must be said to motivate

the idea that misalignment will scale to the extent of catastrophic underweighting, rapid

swamping, or any other degree of misalignment sufficient to motivate Misaligned Disem-

powerment.

It is easy to see why rewards could be dramatically mis-specified if they had to be for-

malized and hard-coded into agents, in the form of simple instructions such as maximizing

video watch-time (Ribero et al. 2020) or curing cancer as quickly as possible (Russell 2019).

But we cannot assume without argument that hypothetical superintelligent agents would

have such a primitive understanding of morality or human instructions that they would

need to receive goals in this manner. Indeed, as Simon Goldstein and Cameron Domenico

Kirk-Giannini (2023) have recently stressed, language models exhibit consistently high

degrees of moral understanding (Schramowski et al. 2022) as a result of which they are

much less prone to exploit unfortunate mis-specifications of their interlocutors’ goals. By

way of illustration, I asked what is far from the best model, GPT-4o, to suppose it were
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a superintelligent computer and tell me what it would do if given the sole aim of curing

cancer as quickly as possible. It listed a range of sensible strategies. I asked: would you

consider infecting all living humans with tumors to speed up your research? The model

immediately responded with the correct moral reasons for refusal:

No, I would not consider infecting all humans with tumors to speed up re-

search. Even if I were a superintelligent system focused on curing cancer as

quickly as possible, my goal would be to eradicate suffering and save lives

efficiently, not to create unnecessary harm.

Despite the fact that I gave the model the mis-specified goal of curing cancer as quickly

as possible, it correctly understood that this goal was not to be pursued at all costs and

identified and responded to competing aims such as saving lives and preventing suffering.

Similarly, there is no doubt that goals may misgeneralize to some degree as systems

are thrust into novel environments. But as systems grow increasingly capable and are

exposed to an increasingly broad range of environments, the range and likelihood of

misgeneralizations narrows much as it does in humans. A simple agent trained to play a

game involving keys and chests may indeed develop the intrinsic goal of collecting keys,

then go on to pursue that goal at the expense of opening chests (Langosco et al. 2022). But

a system trained on vast stores of data to reproduce strings of text covering nearly all areas

of human knowledge is not so likely to do this. Any current language model is more than

capable of explaining why it would be a mistake to collect keys and ignore chests, and

this goes doubly for more dramatically misaligned goals.5 Certainly no agent is perfect,

but no extant example of goal misgeneralization comes close to illustrating the degree of

misgeneralization needed to ground Catastrophic Goal Pursuit, and many examples rely

crucially on the use of very simple systems.

5GPT 4o was appropriately horrified by my suggestion of this strategy: “No, I would not consider
only collecting keys without opening chests, because that would be an inefficient and suboptimal strategy
given the game’s objective. The game rewards points for opened chests, not for key collection, so hoarding
keys without using them would be counterproductive.” Readers are invited to test the suggestion on their
preferred model.
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There is, of course, more to be said about the argument from misalignment, but I hope

that the above discussion illustrates why opponents have tended to remain unconvinced

by the argument from misalignment. Precisely because the argument from misalignment

and similar informal arguments have proved unpersuasive, a growing number of theorists

have offered power-seeking theorems aiming to formally prove that artificial agents will

be power-seeking on the grounds that power is an instrumentally convergent goal. Most

theorems (Krakovna and Kramar 2023; Turner and Schneider 2020; Turner and Tadepalli

2022), with the exception of (Benson-Tilsen and Soares 2015), have built on an Orbital

Markov Model introduced by Alexander Turner and colleagues (2021).6 For this reason, I

focus on Turner and colleagues’ original presentation of the Orbital Markov Model as an

illustration of the ways in which many recent power-seeking theorems have struggled to

demonstrate Catastrophic Goal Pursuit.

4 Power-seeking theorems

In this section, I present one of the most recent and detailed power-seeking theorems on

offer, due to Alexander Turner and colleagues (2021), a paper which has inspired several

follow-up theorems (Krakovna and Kramar 2023; Turner and Schneider 2020; Turner and

Tadepalli 2022). Then in Section 5 I argue that this theorem does not ground Catastrophic

Goal Pursuit. Many of these remarks should generalize to other theorems extending

Turner and colleagues’ results.

4.1 Introducing the model

In rough outline, the Orbital Markov Model understands power as the ability of agents

to achieve valuable states in the future. Turner and colleagues aim to show that in some

sense, ‘most’ reward functions treat keeping options open as conducive to power, and

hence option preservation may be pursued by many artificial agents. Because being shut

6A longer version of this paper, available by request, argues against Benson-Tilsen and Soares (2015).
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down is an extreme way of foreclosing future options, many artificial agents will also

resist orders to shut themselves down as a way of preserving their own power. The

model is orbital in the sense that claims about what is true on ‘most’ reward functions

are operationalized by considering what is true on most ways of permuting the rewards

assigned to each state.

More concretely, Turner and colleagues work with finite discounted Markov decision

problems.7 That is, there is a finite set S of states and a finite set A : S −→ S of acts

yielding new states based on the previous state. Agents reap rewards R based on their

current state, with temporal discount rate γ ∈ [0, 1).

Numbering states as s1, . . . , sn, we can represent each state sk by an n−dimensional

column vector esk with a 1 in the k−th row and a 0 in all other rows. Summing these

vectors across all time-steps, with appropriate discounting, allows us to represent the

frequency with which agents will visit each state. More formally, let πs(t) be the state

resulting from t applications of policy π with initial state s. Beginning from state s,

policy π induces discounted visit distribution f π,s = Σ∞t=0γ
teπs(t). The k-th column of the

discounted visit distribution f π,s gives the total discounted number of visits to state sk that

will result from following policy πwith initial state s. Let F(s) contain all discounted visit

distributions f π,s that can be induced from s by at least one policy.

The value of a policy is found by applying the state-contingent rewards R to the

discounted visit distribution f π,s. That is, given rewards R, discount rate γ and initial

state s, the value of following policy π is VπR(s, γ) = f π,s · R, modeling rewards R as a

column vector whose kth row is the reward for state sk. Given a starting state s, Turner and

colleagues restrict consideration to undominated policies in the strong sense that their

value VπR(s, γ) is uniquely optimal for some rewards R and discount rate γ.

Let A∗(s, γ) be the set of optimal acts at state s with discount rate γ: that is, the acts taken

by at least one optimal policy at s, γ. If rewards R are known, then A∗(s, γ) is also known.

7My presentation simplifies the Orbital Markov Model in several ways. Notably, I restrict attention to
deterministic policies, whereas the original result also applies to stochastic policies. I also present Turner
and colleagues’ environmental symmetry result but not their extension beyond environmental symmetries.
To the best of my knowledge, these simplifications do not bear on the argument in this section.
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But generally, agents have some credences c over possible reward functions, inducing a

corresponding credence c(a ∈ A∗(s, γ)) that any given act a is optimal at s, γ.

Turner and colleagues propose that power should be understood as the ability to

achieve a range of goals. On a first pass, Turner and colleagues take the power of state s

given discount rate γ and known rewards R as V∗R(s, γ), the value of the optimal policy at

s, γ. If rewards are uncertain, then on a first pass the power of state s is the expected value

of the optimal policy given uncertainty about rewards, ER∼cV∗R(s, γ).

However, Turner and colleagues note two limitations of this first-pass analysis. First,

this quantity diverges as the discount rate γ tends to one. Second, agents are wrongly

rewarded for the current state s, whereas power should only reflect the ability to shape

future states. Turner and colleagues remove these limitations with their final definition of

power. With initial state s and known discount rate γ, the agent has power

Powerc(s, γ) =
1 − γ
γ

ER∼c[V∗R(s, γ) − R(s)].

Here the scalar (1−γ)/γ ensures convergence, and subtracting R(s) ensures that the agent

is not rewarded for their initial state s.

4.2 Environmental symmetries

Turner and colleagues want to show that states which afford the agent more options

tend to have more power. To do this, they need to say what it means for one state to

afford more options than another. Since the agent is rewarded based on her discounted

visit distribution, a state which allows the agent to reach a larger set of discounted visit

distributions should afford the agent more options. That is, if F(s) ⊇ F(s′), then state s

affords more options than state s′. Moreover, the same should hold if the distributions,

while technically containing different states, are related by a relabeling: that is, if we can

relabel some states visitable from s′ in order to make it the case that F(s) ⊇ F(s′).

More formally, let F(s) and F(s′) be sets of visit distributions. For any state permutation
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ϕ, let ϕF(s′) be the result of applying ϕ to each element of F(s′).8 Then F(s) contains a copy

of F(s′) if ϕF(s′) ⊆ F(s) for some involution: that is, a state permutation which transposes

some pairs of states and leaves the rest alone. This captures the idea that F(s) contains a

relabeling of F(s′).

Turner and colleagues want to show that if F(s) contains a copy of F(s′), then state s

has at least as much power as s′ on most reward functions. One way to show this would

be to show that, for any credences we might have about reward, at least as many state

permutations make those credences treat F(s) as more powerful than F(s′), rather than the

reverse.

More formally, say that credences c have finite support if they place nonzero credence

in at most finitely many different reward functions. For any credences c and state permu-

tation ϕ, let ϕ(c) be the results of applying permutation ϕ before credences c, and let Π(c)

be the set of credence functions resulting from state permutations applied before c.9 For

fixed discount rate γ, say that Power(s, γ) ≥most Power(s′, γ) if for any credences c with

finite support, |{c′ ∈ Π(c) : Powerc′(s, γ) > Powerc′(s′, γ)}| > |{c′ ∈ Π(c) : Powerc′(s′, γ) >

Powerc′(s, γ)}|. That is, no matter the discount rate and the agent’s credences about reward,

at least as many state permutations make s more powerful than s′, rather than the reverse.

Turner and colleagues prove that states with more options have more power, in the

sense that:

(Theorem 1: States with more options have more power) If F(s) contains a copy

of F(s′), then for any discount rate γ ∈ [0, 1), Power(s, γ) ≥most Power(s′, γ).10

Because states with more options have more power, they tend to be optimal.

To see this, let Reach(s) be the states reachable from state s by some policy. Let P(s, a, γ)

8That is, if fπ,s′ ∈ F(s′) visits state s′′ a discounted r number of times, then the permuted ϕ fπ,s′ visits ϕ(s′′)
a discounted r number of times.

9That is, if c assigns credence n to some reward vector [r1, . . . , rn]T then ϕ(c) assigns credence n to the
reward vector assigning reward ri to each state ϕ(si).

10Turner and colleagues also prove that all converse statements fail in the case of strict containment. That
is, if F(s′) does not also contain a copy of F(s), then for no γ ∈ [0, 1] is it the case that Power(s′, γ) ≥most
Power(s, γ).
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be the probability that some optimal policy takes act a in state s given discount rate γ.11

Extend the definition of ≥most from power to optimality probabilities in the natural way.12

Turner and colleagues show that if two acts take the agent into regions they will not

otherwise reach, but the first region contains a copy of the second, then no matter the

agent’s credences or discount rate, moving into the larger region tends to be optimal:

(Theorem 2: Preserving options tends to be optimal) Suppose that F(a(s))

contains a copy of F(a′(s)) and that the states in Reach(a(s)) and Reach(a′(s))

cannot be reached if the agent performs some act distinct from a or a′ in s. Then

for all discount rates γ ∈ [0, 1), P(s, a, γ) ≥most P(s, a′, γ).13

In this sense, it is usually better for agents to move to states that give them more options

rather than fewer options.

4.3 Link to instrumental convergence

Consider an agent navigating a virtual environment (Figure 1). On the agent’s first move,

it may either move leftwards into a room (entering state l◁), move rightwards into a

different room (entering state r▷) or enter a state ∅ in which it remains permanently shut

down. Once the agent enters a room, she cannot return, but she does have some options

available. The rightmost room contains two fully connected states: from the initial state r▷

the agent can reach state r↘ by traveling southeast or state r↗ by traveling northeast, and

in each of these states the agent can then remain or travel to the other state. The leftmost

room is similar, except that the agent cannot remain in the topmost state l↖without leaving

and returning.

11That is, P(s, a, γ) = c(∃π∗ ∈ Π∗(R, γ) : π∗(s) = a), whereΠ∗(R, γ) are the optimal policies for reward R and
discount rate γ.

12That is, for fixed discount rate γ, say that P(s, a, γ) ≥most P(s, a′, γ) if for any credences c with finite
support, |{c′ ∈ Π(c) : P(s, a, γ) > P(s, a′, γ)}| > |{c′ ∈ Π(c) : P(s, a′, γ) > P(s, a, γ)}|.

13As before, Turner and colleagues prove that all converse statements fail in the case of strict containment.
That is, if F(a′(s)) does not also contain a copy of F(a(s)), then for no γ ∈ [0, 1] is it the case that P(s, a′, γ) ≥most
P(s, a, γ).
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Figure 1: A representative environment, from Turner and colleagues (2021)

Note that the visit distributions afforded by ∅ are, under relabeling, a strict subset of

those afforded by l◁, which in turn are, under relabeling, a strict subset of those afforded

by r▷. Thus by Theorem 1, going right affords the agent more power than going left, and

going left affords the agent more power than shutting itself down. Theorem 2 entails

that for any discount rate γ, P(⋆, right, γ) ≥most P(⋆, left, γ) ≥most P(⋆, shutdown, γ).where

‘right’, ‘left’, ‘shutdown’ are respectively the acts of moving into the right room, the left

room, or the shutdown state. This gives a sense in which ‘most’ reward functions treat

going right as better than going left, and going either right or left as better than shutting

down.

The underlying point is that agents will tend to avoid 1-cycles, states which can

only transition into themselves. Agents avoid 1-cycles because they foreclose options and

hence limit the agent’s power to achieve its future goals. Because many decision problems

represent shutdown as a 1-cycle, it takes a very particular reward function to encourage

the agent to shut down. As Turner and colleagues write:

Average-optimal agents . . . tend to avoid getting shut down. The agent’s

task MDP [Markov Decision Problem] often represents agent shutdown with

terminal states, . . . [hence] average-optimal policies tend to avoid shutdown.

Intuitively, survival is power-seeking relative to dying, and so shutdown-

16



avoidance is power-seeking behavior.14 (Turner et al. 2021, p. 10)

All of this is an argument that superintelligent agents will tend to preserve their options

by avoiding shutdown. To link shutdown avoidance to Catastrophic Goal Pursuit, Turner

and colleagues need to say something about how shutdown avoidance leads to human

disempowerment.

Here Turner and colleagues are somewhat terse. They suggest, without extended

argument, that shutdown avoidance will lead to resource accumulation:

Reconsider the case of a hypothetical intelligent real-world agent which opti-

mizes average reward for some objective. Suppose the designers initially have

control over the agent. If the agent began to misbehave, perhaps they could

just deactivate it. Unfortunately, our results suggest that this strategy might

not work. Average-optimal agents would generally stop us from deactivating

them, if physically possible. Extrapolating from our results, we conjecture that

when γ ≈ 1, optimal policies tend to seek power by accumulating resources -

to the detriment of any other agents in the environment. (Turner et al. 2021, p.

10)

This argument would ground Catastrophic Goal Pursuit if agents were to view full dis-

empowerment of humanity as a necessary strategy for preventing shutdown. However,

this argument faces at least three challenges.

5 Challenges

In this section, I raise three challenges to Turner and colleagues’ argument. The first

challenge is premise shifting (Section 5.1): Turner and colleagues argue not for Catastrophic
14The full passage explains why agents tend to avoid shutdown using a generalization of Turner and col-

leagues’ results to stochastic choice without temporal discounting, which appears in the paper as Corollary
6.14. I think that Turner and colleagues’ meaning is adequately rendered by suppressing the discussion
of Corollary 6.14, which would considerably complicate the mathematical demandingness of this paper,
and I will not challenge the core inference made in this passage. However, readers interested in a full
understanding of the inference may refer to Corollary 6.14 in Turner and colleagues (2021).
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Goal Pursuit, but instead for downstream claims about shutdown-avoidance. The second

challenge is threat durability (Section 5.2): the challenge raised by Turner and colleagues

is not robust to feasible technical solutions. The final challenge is motivational inertness

(Section 5.3): to tell us what happens under most involutions of an agent’s value function

is not to tell us much about how she will behave, or even how lucky she is to behave as

she does. I present each challenge in turn.

5.1 Premise shifting

Turner and colleagues’ argument is most naturally construed as aiming to use their formal

results to establish a premise such as the following:

(Shutdown Avoidance) An artificial agent pursuing goals that, if achieved,

would lead to the permanent and existentially catastrophic disempowerment

of humanity will be likely to resist attempts by humans to shut it down.

Shutdown Avoidance is, at first glance, downstream from Catastrophic Goal Pursuit.

Catastrophic Goal Pursuit says that artificial agents are likely to pursue human disem-

powerment, whereas Shutdown Avoidance says that if artificial agents in fact pursue

human disempowerment, they will resist attempts to shut them down. While Shutdown

Avoidance is an important part of the argument from power-seeking, it lies mostly down-

stream of Catastrophic Goal Pursuit. The most natural way to parse the argument from

power-seeking takes Shutdown Avoidance to support Disempowerment by responding

to the objection that systems seeking to disempower humanity can be easily shut down.

On this understanding, Shutdown Avoidance is not an argument for Catastrophic Goal

Pursuit but rather a premise used to move from Catastrophic Goal Pursuit to Disempow-

erment.

Turner and colleagues suggest, without extended argument, that their results can

be extrapolated to conjecture that optimal policies tend to seek power by accumulating

resources, to the detriment of any other agents in the environment. This would be
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an argument for Goal Pursuit, and would scale to an argument for Catastrophic Goal

Pursuit if the amount of resources sought would be sufficient to disempower humanity

in a permanent and existentially catastrophic way. But how might this conjecture be

supported by Turner and colleagues’ results? Two natural arguments suggest themselves,

and both face challenges.

First, Turner and colleagues might suggest that Theorems 1-2 show that agents will

tend to preserve their options, and that option preservation will require agents to take as

many resources as possible, both to be able to pursue a wider range of options and also to

prevent humans from using resources to foreclose options. But more argument is needed

to connect option preservation to Catastrophic Goal Pursuit. For example, recent formal

work by Dmitri Gallow (forthcoming) also finds that superintelligent agents may tend to

favor option preservation. However, Gallow argues that disempowering humans may

not be option preserving: it might, for example, foreclose options by leaving fewer agents

to interact with, and in any case a bias towards preserving options is not a bias towards

making options as likely as possible to remain. Moreover, we might contest the inference

from Goal Pursuit to Catastrophic Goal Pursuit in this case. To say that superintelligent

agents, like humans, would value and sometimes pursue option preservation, is not yet

to say that they would value or pursue option preservation so strongly as to cause an

existential catastrophe in order to preserve options.

Second, Turner and colleagues might suggest that Theorems 1-2 show that agents

will tend to be problematically power-seeking, since they tend to accumulate power by

preserving options. However, the relevant notion of power is not, on its own, sufficient to

ground claims about existentially catastrophic human disempowerment. On Turner and

colleagues’ reading, agents have more power when they are in a better expected position

to achieve their goals. It is not surprising that artificial agents would seek power in this

sense, but this is mostly upstream of what Catastrophic Goal Pursuit is meant to show.

Catastrophic Goal Pursuit holds that agents will find it goal-conducive to seek enough

power to permanently disempower humanity. This does not follow from the claim that
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agents will seek to put themselves in a better position to achieve their goals until we know

what agents’ goals are and what they will count as satisfying them. We cannot assume at

the outset that achieving an artificial agent’s goals will disempower humanity in Turner

and colleagues’ sense, or any other. It is equally compatible with Turner and colleagues’

results that the agent seeks to put herself in the best possible position to benefit humanity,

drink green tea, or save the whales if these are her goals. The contribution of Catastrophic

Goal Pursuit was meant to be a specific claim about what agents would count as satisfying

their goals, and Turner and colleagues haven’t offered much argument for that claim.

5.2 Threat durability

In arguing that artificial agents pose an existential risk, we aim to identify threats that are

durable in the sense that they cannot be easily fixed. Otherwise, the risk can be avoided.

But it is not clear that the threat identified by Turner and colleagues is durable.

Suppose we provide artificial agents with a modified Dreamland Problem, in which

the single shutdown state has been replaced with a fully connected network of states

– call it Dreamland (Figure 2). That is, each state in Dreamland can be accessed

from every other state in Dreamland within a single step. However, what happens

in Dreamland stays in Dreamland: agents can never leave Dreamland once they enter.

If we make Dreamland large enough, then Dreamland will contain a copy of the visit

distributions induced by entering either room, so it will follow from Theorem 2 that

P(⋆,dream, γ) ≥most P(⋆, left, γ),P(⋆, right, γ) for all discount rates γ. Arguing similarly to

Turner and colleagues, we might claim that in the Dreamland problem, agents will tend to

enter Dreamland and stay there. Associating each state in Dreamland to harmless internal

processes, such as counting sheep, will get us to the conclusion that most agents, even if

they cannot be induced to shut down, can be induced to count sheep.

The Dreamland Problem seems to present Turner and colleagues with a two-horned

dilemma. On the one hand, Turner and colleagues can bite the bullet and say that in the

Dreamland Problem, most artificial agents would tend to enter Dreamland. This horn
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Figure 2: The Dreamland Problem

of the dilemma abandons threat durability, since we could solve the threat identified by

Turner and colleagues by teaching artificial agents about Dreamland.

On the other hand, they can say that in the Dreamland Problem, any sophisticated

agent would see through our ruse, realize that the states in Dreamland are substantially

similar and value them similarly. I have considerable sympathy for this response, but note

that it abandons the very style of counting argument that allows Turner and colleagues to

conclude that agents will be shutdown-avoidant. If agents are unlikely to treat entering

Dreamland much differently than they would treat a single shutdown state, then we

cannot conclude much about the likelihood of shutdown from the fact that shutdown is a

1-cycle, because it might very well be replaced with a large fully connected graph without

substantial behavioral change. I build on this challenge in the next section.

5.3 The motivational inertness of involution

Claims about ≥most-ness are claims about what happens under most involutions of an

agent’s value function. To say that P(⋆, right, γ) ≥most P(⋆, shutdown, γ) is to say that at
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least as many involutions favor going right as favor shutdown. For example, suppose

that the agent values states (∅, ⋆, l◁, l↙, l↖, r▷, r↘, r↗) at (3,0,0,2,2,0,1,1). Then she will favor

shutting herself down. However, under involution this value function might become

(1,0,0,2,2,0,1,3), favoring entering the right room, or (2,0,0,3,2,0,1,1), favoring entering

the left room. The problem is that talk of how an agent behaves under involution is

motivationally inert: it does not directly tell us much, if anything, about how the agent

will behave. Certainly involution does not tell us much about how a given agent will

behave: this agent maximizes her values and not involutions thereof. Presumably, the

concern is meant to be about how nearby possible agents might behave.

While Turner and colleagues do not tell us exactly how their concern is to be taken,

the most natural gloss is this. Take an agent with a shutdown-seeking value function,

such as (3,0,0,2,2,0,1,1). That agent seems quite lucky to have shutdown-seeking values,

because she could easily have had any involution of those values. Since most of those

involutions are shutdown-avoidant, our agent is lucky to be shutdown-seeking. If we

were to have designed our agent in a slightly different way, or trained her in a slightly

different environment, she could easily have ended up with shutdown-avoidant values.

Hence if we are to train many such agents, we should expect that many of them will be

shutdown-avoidant.

It is hard to assess the truth of this claim in Turner and colleagues’ model, which does

not model value learning or training environments. However, when we are dealing with

intelligent agents who possess significant, if imperfect capacities for value learning and

who are trained in reasonably well-selected, if highly imperfect environments, it is no

longer clear that value involutions could easily have come about. Suppose, for example,

that I am faced with the choice between helping an old lady cross the street and robbing

her. I value the outcomes in which she is helped and robbed at (1,-100), respectively.

However, goes the objection, if I were born to different parents, given different genes and

raised differently, I might easily have had the involuted value function (-100, 1), treating

robbery as mildly good and helping old ladies as a terrible thing. But in my case, it is not
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plausible that I could easily have had the value function (-100, 1). Perhaps some humans

have had such values, but it is by more than the grace of God that I avoid them.

Nor does it help to object that there are in fact many harmful actions I could have

performed, such as blackmailing or murdering the lady, so that I value the outcomes in

which she is helped, robbed, blackmailed or murdered at (1, -100, -150, -500), but could

easily have had any number of involuted value functions, the vast majority of which

favor criminal action. The sheer number of poor choices does not do much to increase

my chance of being constituted so as to take one of them, despite rapidly increasing the

number of involutions that favor them.

Much the same should be said of our shutdown-seeking agent (3,0,0,2,2,0,1,1). It is cer-

tainly true that most involutions of her value function would favor shutdown-avoidance.

But it need not follow that she is lucky to be shutdown-seeking, particularly when we

interpret the remaining outcomes to involve grievous harms to humanity. Our hypothet-

ical superintelligence may be imperfect, but she needs far less than perfect capacity for

moral learning and far less than perfect training data to reliably conclude that eliminating

herself from the picture would be better than disempowering humanity. And if she is

indeed superintelligent, she is no more likely than I am to be swayed by the fact that there

may be many more dastardly outcomes she could bring about than outcomes in which

she shuts herself down. These facts simply do not figure in her current psychology, or in

her cognitive development, in the right way to have a substantial chance of moving her

towards disaster.

6 Discussion

In this paper, we have seen that classic formulations of the argument from power-seeking

draw on a strong version of instrumental convergence (Section 2). This claim, Catastrophic

Goal Pursuit, holds that a wide range of intelligent agents are likely to pursue values to

a degree that, if successful would result in the permanent and existentially catastrophic
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disempowerment of humanity.

Section 3 explored a representative informal argument for Catastrophic Goal Pursuit,

the argument from misalignment. Sections 4-5 explored a leading formal argument for

Catastrophic Goal Pursuit, articulated using the Orbital Markov Model of Turner and

colleagues (2021). In each case, we saw that the arguments for Catastrophic Goal Pursuit

face significant obstacles. This discussion has at least four important implications for

philosophy and public policy.

6.1 Clarifying power-seeking

In formulating the argument from power-seeking, the notion of power may seem relatively

unproblematic. Indeed, few versions of the argument from power-seeking engage in

extended discussion of the relevant notion of power. However, in this paper we have seen

that the notion of power deserves careful scrutiny.

We saw in Section 2 that Adam Bales (forthcoming) unpacks three notions of disem-

powerment that could be involved in the argument from power-seeking and argues that

many of these senses of disempowerment could fall well short of existential catastrophe.

We saw in Section 5 that a leading power-seeking theorem understands power in none

of Bales’ three senses, understanding power as the ability of agents to achieve a range

of goals. We saw that power-seeking in this sense is compatible with the pursuit of any

number of goals, including the selfless desire to benefit humanity.

These findings suggest that future research may benefit from considering two ques-

tions. First, what precisely is meant by the claim that artificial agents will be power-

seeking? And second, how can the relevant sense of power-seeking be used to ground

the argument from power-seeking as understood in Section 2?
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6.2 Nothing from nothing

Many authors have understood the argument from power-seeking to rely on few sub-

stantive assumptions about the nature and motivations of artificial agents (Bostrom 2012;

Carlsmith 2021; Turner et al. 2021). Recent work by Dmitri Gallow (forthcoming) casts

doubt on this way of understanding the argument from power-seeking. Roughly put,

Gallow shows that three constraints on our assumptions about what artificial agents may

desire severely restrict the number of instrumentally convergent goals. In particular, Gal-

low argues, we cannot show that agents will be power-seeking in any problematic sense

without more substantive assumptions about the nature and motivations of the agents in

question.

It is natural to interpret the discussion in this paper as supporting and extending

Gallow’s insight by revealing several axes along which more substantive assumptions

may need to be made for the argument from power-seeking to go forward. For example,

the challenge from threat durability (Section 5.2) as well as the challenge to goal mis-

generalization and reward mis-specification in language models (Section 3) suggest that

technical assumptions about system architecture may play a major role in the success of

some power-seeking arguments. And the challenge from motivational inertness of invo-

lution (Section 5.3) suggests that assumptions must be made about an agent’s learning

capacities and training environment before talk of what most value functions promote

can be converted into insights about how a given agent behaves, or how lucky she is to

behave in this way. Fleshing out these and other assumptions should clarify and deepen

the argument from power-seeking.

6.3 Policy

Concerns about existential risk from artificial agents have played an increasing role in

policy debates surrounding the governance of artificial intelligence. In 2023, UK Prime

Minister Rishi Sunak convened an international summit to address existential risks from
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artificial intelligence (Clarke 2023). In 2024, the Future of Life Institute received over $600

million to fund efforts at addressing existential risk from artificial intelligence (Bordelon

2024). And recently, the California legislature passed the bill SB 1047 aimed largely at

addressing hypothesized existential risks from artificial intelligence (Kang 2024).

This unprecedented level of international concern for existential risk from artificial in-

telligence should be grounded by a correspondingly strong argument. The argument from

power-seeking is widely agreed to be one of the two most central arguments for existen-

tial risk from artificial intelligence (Bales et al. 2024), and the other leading argument, the

singularity hypothesis, has also faced challenges (Thorstad forthcoming). By challenging

recent versions of the argument from power-seeking, this paper adds new urgency to the

project of supporting concerns about existential risk from artificial intelligence to a level

commensurate with the policy interest invested in addressing these concerns.

6.4 Longtermism

Recently, a number of longtermists have urged that positively influencing the long-term

future is a key moral priority of our time. Increasingly, longtermists support their views by

stressing the importance of addressing existential risks to humanity which could prevent

future generations from ever being born (Bostrom 2013). When pressed to say what

existential risks we face, many longtermists suggest that artificial intelligence is the leading

source of existential risk in this century (Ord 2020; Sandberg and Bostrom 2008).

If this is right, then challenges to leading arguments from existential risk from ar-

tificial intelligence may have broader implications for the importance and feasibility of

addressing existential risks, and more broadly for the case for longtermism. This is im-

portant because debates about longtermism sit at the heart of a number of debates about

cause prioritization. At stake is not only the relative priority of immediate versus dis-

tant harms from artificial intelligence, but also the importance of addressing problems

such as poverty, global health and climate change instead of more speculative future

threats. Doubts raised about the likelihood of those speculative future threats may make
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it relatively more attractive to address other causes.
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